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Pseudo-differential operators, BKP equation and Weistrass 
P(x)  function 

A Roy Chowdhury and N Dasgupta 
High Energy Physia Division. Department of Physics, Jadavpur University, Calculta 
700 032, India 

Received 5 June 1991 

Abrtrael. We present a derivation a f the  B K P  equation based on explicit computation with 
pseudo-differential operators. In the latter pan of our analysis, we show that the stationary 
Solutions of this equation are given by the Weirtrass P ( x )  function, by assuming that L' 
and Ls commute with L'. Nowhere have we used the machinery of algebraic geometry. 

I n  a recent communication we have obtained some explicit solution of the  eq equation 
on a rational singular curve [ l ]  where we used the elegant formalism of Krichver and 
Novikov. On the other hand it is known that nonlinear equations such as KP, B K P ,  etc, 
all possess various other kinds of solutions also. A special and important class of 
solutions can be extracted from the commutation property of differential and pseudo- 
differential operators [2]. In this respect it has been seen that the use of some 
Baker-Akhiezer function leads to some very general results about these solutions. But 
the machinery of algebraic geometry is not accessible to all. Hence in this communica- 
tion we have adopted a very elementary approach to find out the structure of stationary 
solutions of B K P  equation. In  the first part of our letter we have shown how, by starting 
from a pseudo-differential operator, we can explicitly construct the B K P  system, using 
oniy very eiementary aigebraic manipuiation. i n  the next part we show that the 
assumption that ( L4)+ commutes with both ( L3)+ and ( Ls)+ leads to a class of stationary 
solutions of the B K P  system in terms of the Weistrass elliptic function P ( x ) ;  doubly 
periodic on a torus, Here we have used the standard notation that L is the pseudo- 
differential operator; a t  u0+u,a-'+u2a-*+.  . . , and (L") ,  denotes the positive part 
of the nth power of L. 

Let us start with the pseudo-differential operator [31 

where we have omitted the constant-level term in L, where ax' stands for the integral 
operator I:, , and ( L ) "  denotes the formal nth power of L, while ( L ) :  denotes the 
corresponding part keeping only non-negative powers of a .  

Now we get by a straightforward calculation 
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where 

where 

with 

Also 
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b ,  = a; +2az 
b3= a;+2a,+2a,a2-a,a;  etc 

b2 = a;+ 2a,+ a: 

cI =a;+3a;+3a3+3a: 
c2= a:+3a.;+3a4+6a,a2. 

ii') + - a  - + 3 a , a + 3 ( a ; + a z )  

Combining (2) and (5 )  we get 
3 

( LS)+ = d S  + 1 dia-' (8) 

d , =  10a~+5a,flOa:+lOa; (9) 

i-0 

do= 10a;+5a4+20a,a,+20a,a:+5a:'+10a; 

d2=10a{+5a2 d ,  = Sa, 
where we have quoted only the truncated form of the Ls operator as the one with 
negative J'* is not needed. 

We now consider the following equations: 

Using the above expressions for ( L3)+, (L') , ,  and L we get 
[( L'),, L ]  = (30; -2a;+6a,a:)J-'+ (3a:+3a: - a:-6(ai2+ ala; ) )J-*  

+ { 3 ~ ; + 3 a ~ + a ~ + 9 n l n , t 9 a 1 ' a :  +3a,n:"+3a,a:)a-' (11) 
and also 
[(L'), ,  L ) ]  = (-4a;+ 10aY + loa: +5a:+20a:a,+30a:a: - IOa,a'; +20a;a,)a-'. 

Equations (10). (1  1) and (12) lead to 
(12) 

drr;  _-  - 30; -2a:'+6a,a: 
JY 

and so on. 
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Actually equations (10) lead to an infinite set of coupled nonlinear systems. To 
reproduce any single meaningful equation we must take recourse to a reduction 
procedure. In the present case we take recourse to the sixth-order reduction of L;  in 
the sense of [41. In short this means that L6 will be a perfectly differential operator 
without any integral part. Furthermore we demand that L6 will be of the following form: 

L6 = (J' + k,J)'+ k2J2+ (2k:+ k,)J + ( k ;  + k,+ k;) (14) 
L = d + f k , a - l - " . '  , K ,  ~ *-2 + a  1 , 4 # ~ , ,  I~ K ,  + k, -$  k:)a-3+t(k3 - $ k ;  - fk;-$k, k ;  ja-* 

(15 )  
which implies a; + a, = 0. 

It is interesting to note that this condition implies the absence of a constant-level 
term in (L") ,  (equation ( 5 ) ) .  The same is also the case with (L'),.  So in general we 
may characterize the BKP hierarchy by the constraint that (L2"")+ will not contain 
any constant-level term. 

+'( k -9k; -16 k" -r? kO'-- k ktp+!!k k - $ k : ) ~ - ~ + .  , , 
6 4  6 2  9 1 9 I I  2 1 2  

Therefore equation (13) leads to 

a q =  a y  -2a;+ k , .  

If we now set a, = 2wx then 

a3=f(2oy+40"'- 12w:+ k,) 

and we also observe that equation (15) implies 
- - 2 0 " I - i  

4- 3 3wxy+16wxwxx+k1 

whence on choosing k,  = k2 = 0, o is seen to satisfy the BKP equation 

J 
(wxxxxx +30wxw, -5w,, -3Ow,w,+600~ +9w,) - 5w, = 0. (18 )  

We emphasize that on assuming commutativity of (L ' ) ,  and ( L s ) +  with (L4)+, we 
can generate stationary solutions of the BKP equation. In the previous communication 
[l]  we obtained some typical solutions of the BKP equation on a singular rational 
algebraic curve. Let us now compute [ (L') , ,  (L4)+], which turns out to be 

( 2 4  -30; -6a,a;)J2+ (a:+6a,a; +sa;*) 

- 
ax 

+(a ;+9 (a ,a : '+a ;a ; )+9a;ar+  18a:a;). (19) 

Equating to zero coefficients of a2, J and constant term we obtain after trivial integration; 

a3=f(2a;-3a:)+ cI 

ay  +6a,a;  = c2 

a:'+9a,a;+qa;2+6a: = c3 

where c , ,  c 2 ,  c, are constants of integration. Now (206) and ( 2 0 c )  imply, 

a ;  +3a: = CIX  + ca. (21) 

If we assume c,=O and scale a, and x then (21) can be rewritten as; 

-= 66:+2 
az 
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where x = A z  and b, = - a l .  Equation (21) is nothing but the canonical equation of 
type 1 in the Painlive classification as described by Ince [ 5 ] .  On the other hand if we 
set c2 = 0 and c, # 0 then we deduce, 

which is the equation satisfied by the Weistrass P(z) function. It is actually an elliptic 
function doubly periodic on a torus. 

In our above analysis we have shown how the BKP equation can be deduced from 
the algebra of pseudo-differential operators in a simple way and stationary solutions 
are also deduced from the commutativity properties of ( L ) y  operators in terms of the 
Weistrass P ( x )  function. 

It may be mentioned that a similar analysis was performed for the K P  equation by 
Griinbaum [6] and Lathaw [7]. We are grateful to the referee for bringing these 
references to our attention. 

One of the authors, N Dasgupta, is grateful to CSIR for a JRF. 
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